SKKT 92, SKKH 92, SKKT 92B


Thyristor / Diode Modules

## SKKT 92

SKKT 92B
SKKH 92

## Features

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63532


## Typical Applications*

- DC motor control
(e. g. for machine tools)
- AC motor soft starters
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)

1) See the assembly instructions

| $\mathrm{V}_{\text {RSM }}$ | $\mathrm{V}_{\text {RRM }}, \mathrm{V}_{\mathrm{DRM}}$ |
| :---: | :---: |
| V | V |
| 900 | 800 |
| 1300 | 1200 |
| 1500 | 1400 |
| 1700 | 1600 |
| 1900 | 1800 |


| $\mathrm{I}_{\text {TRMS }}=150 \mathrm{~A}$ (maximum value for continuous operation) |  |  |
| :---: | :---: | :---: |
| $\mathrm{I}_{\text {TAV }}=95 \mathrm{~A}\left(\right.$ sin. $\left.180 ; \mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}\right)$ |  |  |
| SKKT 92/08E | SKKT 92B08E | SKKH 92/08E |
| SKKT 92/12E | SKKT 92B12E | SKKH 92/12E |
| SKKT 92/14E | SKKT 92B14E | SKKH 92/14E |
| SKKT 92/16E | SKKT 92B16E | SKKH 92/16E |
| SKKT 92/18E | SKKT 92B18E | SKKH 92/18E |


| Symbol | Conditions | Values | Units |
| :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{TAV}}$ $I_{D}$ $I_{\text {RMS }}$ | $\begin{aligned} & \sin .180 ; \mathrm{T}_{\mathrm{c}}=85(100)^{\circ} \mathrm{C} ; \\ & \mathrm{P} 3 / 180 ; \mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C} ; \mathrm{B} 2 / \mathrm{B} 6 \\ & \mathrm{P} 3 / 180 \mathrm{~F} ; \mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C} ; \mathrm{B} 2 / \mathrm{B} 6 \\ & \mathrm{P} 3 / 180 \mathrm{~F} ; \mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C} ; \mathrm{W} 1 / \mathrm{W} 3 \end{aligned}$ | $\begin{gathered} 95(68) \\ 70 / 85 \\ 140 / 175 \\ 190 / 3 * 135 \end{gathered}$ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$ |
| $\begin{array}{\|l} \mathrm{I}_{\mathrm{TSM}} \\ \mathrm{i}^{2 \mathrm{t}} \end{array}$ | $\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms} \end{aligned}$ | $\begin{gathered} \hline 2000 \\ 1750 \\ 20000 \\ 15000 \end{gathered}$ | $\begin{gathered} \mathrm{A} \\ \mathrm{~A} \\ \mathrm{~A}^{2} \mathrm{~S} \\ \mathrm{~A}^{2} \mathrm{~S} \end{gathered}$ |
| $\begin{aligned} & \hline \mathrm{V}_{\mathrm{T}} \\ & \mathrm{~V}_{\mathrm{T}(\mathrm{TO})} \\ & \mathrm{r}_{\mathrm{T}} \\ & \mathrm{I}_{\mathrm{DD}} ; \mathrm{I}_{\mathrm{RD}} \end{aligned}$ | $\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{T}}=300 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{RD}}=\mathrm{V}_{\mathrm{RRM}} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DRM}} \end{aligned}$ | max. 1,65 <br> max. 0,9 <br> max. 2 <br> max. 20 | $\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~m} \Omega \\ \mathrm{~mA} \end{gathered}$ |
| $\begin{aligned} & \mathrm{t}_{\mathrm{gd}} \\ & \mathrm{t}_{\mathrm{gr}} \end{aligned}$ | $\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{G}}=1 \mathrm{~A} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{D}}=0,67^{*} \mathrm{~V}_{\mathrm{DRM}} \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\mu \mathrm{s}$ <br> $\mu \mathrm{s}$ |
| $\begin{aligned} & \hline(\mathrm{di} / \mathrm{dt})_{\mathrm{cr}} \\ & (\mathrm{dv} / \mathrm{dt})_{\mathrm{cr}} \\ & \mathrm{t}_{\mathrm{q}} \\ & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{L}} \end{aligned}$ | $\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C}, \\ & \mathrm{~T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \text { typ. / max. } \\ & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{G}}=33 \Omega ; \text { typ. / max. } \end{aligned}$ | $\begin{gathered} \hline \operatorname{max.} 150 \\ \operatorname{max.} 1000 \\ 100 \\ 150 / 250 \\ 300 / 600 \end{gathered}$ | A/ $\mu \mathrm{s}$ <br> $\mathrm{V} / \mu \mathrm{s}$ <br> $\mu \mathrm{s}$ <br> mA <br> mA |
| $\begin{aligned} & \mathrm{V}_{\mathrm{GT}} \\ & \mathrm{I}_{\mathrm{GT}} \\ & \mathrm{~V}_{\mathrm{GD}} \\ & \mathrm{I}_{\mathrm{GD}} \end{aligned}$ | $\begin{aligned} & T_{v j}=25^{\circ} \mathrm{C} ; \text { d.c. } \\ & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \text { d.c. } \\ & \mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; \text { d.c. } \\ & \mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \text {; d.c. } \end{aligned}$ | $\begin{gathered} \min .3 \\ \min .150 \\ \max .0,25 \\ \max .6 \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$ |
| $\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})} \\ \mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})} \\ \mathrm{R}_{\mathrm{th}(\mathrm{j})} \\ \mathrm{R}_{\mathrm{th}(\mathrm{c}-\mathrm{s})} \\ \mathrm{T}_{\mathrm{vj}} \\ \mathrm{~T}_{\mathrm{stg}} \\ \hline \end{array}$ | cont.; per thyristor / per module sin. 180; per thyristor / per module rec. 120; per thyristor / per module per thyristor / per module | $\begin{gathered} 0,28 / 0,14 \\ 0,3 / 0,15 \\ 0,32 / 0,16 \\ 0,2 / 0,1 \\ -40 \ldots+125 \\ -40 \ldots+125 \end{gathered}$ | K/W <br> K/W <br> K/W <br> K/W <br> ${ }^{\circ} \mathrm{C}$ <br> ${ }^{\circ} \mathrm{C}$ |
| $\begin{array}{\|l} \hline V_{\text {isol }} \\ M_{s} \\ M_{t} \\ a \\ m \end{array}$ | a. c. 50 Hz ; r.m.s.; $1 \mathrm{~s} / 1 \mathrm{~min}$. to heatsink to terminals approx. | $\begin{gathered} 3600 / 3000 \\ 5 \pm 15 \%^{1)} \\ 3 \pm 15 \% \\ 5 \text { * } 9,81 \\ 95 \end{gathered}$ | $\begin{gathered} \mathrm{V} \sim \\ \mathrm{Nm} \\ \mathrm{Nm} \\ \mathrm{~m} / \mathrm{s}^{2} \\ \mathrm{~g} \end{gathered}$ |
| Case | SKKT <br> SKKT ...B <br> SKKH | $\begin{aligned} & \text { A } 46 \\ & \text { A } 48 \\ & \text { A } 47 \end{aligned}$ |  |



Fig. 1L Power dissipation per thyristor vs. on-state current



Fig. 3L Power dissipation of two modules vs. direct current



Fig. 2R Power dissipation per module vs. case temp


Fig. 3R Power dissipation of two modules vs. case temp.

## SKKT 92, SKKH 92, SKKT 92B






Fig. 4R Power dissipation of three modules vs. case temp.





* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

